Prompt engineering in guiding large language models (LLMs)
Impossibile aggiungere al carrello
Puoi avere soltanto 50 titoli nel carrello per il checkout.
Riprova più tardi
Riprova più tardi
Rimozione dalla Lista desideri non riuscita.
Riprova più tardi
Non è stato possibile aggiungere il titolo alla Libreria
Per favore riprova
Non è stato possibile seguire il Podcast
Per favore riprova
Esecuzione del comando Non seguire più non riuscita
-
Letto da:
-
Di:
A proposito di questo titolo
explains the role of prompt engineering in guiding large language models (LLMs) to solve problems and perform tasks. The document focuses on three prompting techniques: Chain of Thought (CoT), Tree of Thought (ToT), and Self-Reflection, describing how each technique allows LLMs to reason through problems, consider multiple solutions, and analyze their own reasoning process. It then explores the use of prompt engineering in various applications such as multi-modal models, dynamic prompting, and autonomous decision-making. The document concludes with a discussion on the future of prompt engineering, including few-shot learning prompts, interactive prompting, and explainable prompt design.
Ancora nessuna recensione