Open-Source LLM Movement
Impossibile aggiungere al carrello
Rimozione dalla Lista desideri non riuscita.
Non è stato possibile aggiungere il titolo alla Libreria
Non è stato possibile seguire il Podcast
Esecuzione del comando Non seguire più non riuscita
-
Letto da:
-
Di:
A proposito di questo titolo
In this episode, we explore how open-source large language models transformed AI by breaking proprietary barriers and making advanced systems accessible to a global community. We examine why the open movement emerged, how open LLMs are built in practice, and why transparency and reproducibility matter.
We trace the journey from large-scale pre-training to instruction tuning, alignment, and real-world deployment, showing how open models now power education, tutoring, and specialized applications—often matching or surpassing much larger closed systems.
This episode covers:
- Why open LLMs emerged and what they changed
- Model weights, transparency, and reproducibility
- Pre-training, instruction tuning, and alignment
- Open LLMs in education and specialized domains
- RAG, multi-agent systems, and trust
- Small specialized models vs large proprietary models
This episode is part of the Adapticx AI Podcast. Listen via the link provided or search “Adapticx” on Apple Podcasts, Spotify, Amazon Music, or most podcast platforms.
Sources and Further Reading
Additional references and extended material are available at:
https://adapticx.co.uk