MLG 001 Introduction
Impossibile aggiungere al carrello
Puoi avere soltanto 50 titoli nel carrello per il checkout.
Riprova più tardi
Riprova più tardi
Rimozione dalla Lista desideri non riuscita.
Riprova più tardi
Non è stato possibile aggiungere il titolo alla Libreria
Per favore riprova
Non è stato possibile seguire il Podcast
Per favore riprova
Esecuzione del comando Non seguire più non riuscita
-
Letto da:
-
Di:
A proposito di questo titolo
Show notes: ocdevel.com/mlg/1. MLG teaches the fundamentals of machine learning and artificial intelligence. It covers intuition, models, math, languages, frameworks, etc. Where your other ML resources provide the trees, I provide the forest. Consider MLG your syllabus, with highly-curated resources for each episode's details at ocdevel.com. Audio is a great supplement during exercise, commute, chores, etc.
- MLG, Resources Guide
- Gnothi (podcast project): website, Github
- "Middle" level overview (deeper than a bird's eye view of machine learning; higher than math equations)
- No math/programming experience required
Who is it for
- Anyone curious about machine learning fundamentals
- Aspiring machine learning developers
Why audio?
- Supplementary content for commute/exercise/chores will help solidify your book/course-work
What it's not
- News and Interviews: TWiML and AI, O'Reilly Data Show, Talking machines
- Misc Topics: Linear Digressions, Data Skeptic, Learning machines 101
- iTunesU issues
Planned episodes
- What is AI/ML: definition, comparison, history
- Inspiration: automation, singularity, consciousness
- ML Intuition: learning basics (infer/error/train); supervised/unsupervised/reinforcement; applications
- Math overview: linear algebra, statistics, calculus
- Linear models: supervised (regression, classification); unsupervised
- Parts: regularization, performance evaluation, dimensionality reduction, etc
- Deep models: neural networks, recurrent neural networks (RNNs), convolutional neural networks (convnets/CNNs)
- Languages and Frameworks: Python vs R vs Java vs C/C++ vs MATLAB, etc; TensorFlow vs Torch vs Theano vs Spark, etc
Ancora nessuna recensione