Deterministic by Design: Why "Temp=0" Still Drifts and How to Fix It
Impossibile aggiungere al carrello
Puoi avere soltanto 50 titoli nel carrello per il checkout.
Riprova più tardi
Riprova più tardi
Rimozione dalla Lista desideri non riuscita.
Riprova più tardi
Non è stato possibile aggiungere il titolo alla Libreria
Per favore riprova
Non è stato possibile seguire il Podcast
Per favore riprova
Esecuzione del comando Non seguire più non riuscita
-
Letto da:
-
Di:
A proposito di questo titolo
Send us a text
Why do LLMs still give different answers even with temperature set to zero? In this episode of The Second Brain AI Podcast, we unpack new research from Thinking Machines Lab on defeating nondeterminism in LLM inference. We cover the surprising role of floating-point math, the real system-level culprit, lack of batch invariance, and how redesigned kernels can finally deliver bit-identical outputs. We also explore the trade-offs, real-world implications for testing and reliability, and how this breakthrough enables reproducible research and true on-policy reinforcement learning.
Sources:
- Defeating Nondeterminism in LLM Inference
- Non-Determinism of “Deterministic” LLM Settings
Ancora nessuna recensione