Bill Gibson: Trust Over Tech In Healthcare AI
Impossibile aggiungere al carrello
Puoi avere soltanto 50 titoli nel carrello per il checkout.
Riprova più tardi
Riprova più tardi
Rimozione dalla Lista desideri non riuscita.
Riprova più tardi
Non è stato possibile aggiungere il titolo alla Libreria
Per favore riprova
Non è stato possibile seguire il Podcast
Per favore riprova
Esecuzione del comando Non seguire più non riuscita
-
Letto da:
-
Di:
A proposito di questo titolo
Bill Gibson is an experienced technical leader who has led engineering and product teams across startups and large companies. He brings real-world perspective to AI implementation and product development.
Bill talks about:
- Anchoring AI features in natural workflows: don’t bolt on chatbots; embed intelligence where users already expect it.
- Enforcing trust through transparency: always label AI‑generated content and surface confidence scores and data provenance.
- Focusing on achievable use cases: massive datasets alone won’t guarantee success; start with narrowly scoped, high impact AI applications.
- Designing for model evolution: use abstraction layers (like Cursor or Windsurf) so you can swap underlying AI engines as they improve.
- Outsourcing selectively: retain your strategic “special sauce” and core architecture in‑ house, but consider contracting out standard, non‑differentiating features.
Key quote: “Trust is the whole thing… we need to make sure that we clearly differentiate that this is not a doc, this is not a nurse, this is not a medical practitioner. This is an AI.”
Ancora nessuna recensione