El silencio y la palabra, una singularidad en el código genético copertina

El silencio y la palabra, una singularidad en el código genético

El silencio y la palabra, una singularidad en el código genético

Ascolta gratuitamente

Vedi i dettagli del titolo

3 mesi a soli 0,99 €/mese

Dopo 3 mesi, 9,99 €/mese. Si applicano termini e condizioni.

A proposito di questo titolo

El código genético es uno de los conceptos más centrales de la biología moderna porque establece la forma en que la información hereditaria se transforma en materia viva. A través de este sistema, las instrucciones almacenadas en el ADN y el ARN se traducen en proteínas, las moléculas que realizan casi todas las funciones dentro de la célula. Durante décadas, el código genético se presentó como un conjunto de reglas claras y estables, en el que cada codón tenía un significado preciso y universal. Esta aparente simplicidad permitió entender cómo pequeñas variaciones en la información genética podían producir cambios en la estructura y función de las proteínas, sentando las bases de la genética, la biotecnología y la medicina molecular. Además, la notable conservación del código genético entre organismos muy distintos reforzó la idea de un origen común de la vida y convirtió a este sistema en uno de los mejores ejemplos de continuidad evolutiva. Sin embargo, esta visión también llevó a pensar que el código genético era rígido e inmutable, una especie de lenguaje perfecto que no admitía ambigüedades. Solo con el paso del tiempo comenzaron a aparecer excepciones que obligaron a cuestionar esa idea y a reconocer que, incluso en los principios más básicos de la biología, existe un margen para la flexibilidad y la adaptación. En este contexto, el estudio realizado por Shalvarjian y colaboradores representa una singularidad notable dentro de la biología molecular. Publicado en la revista PNAS, este trabajo se centra en la arquea metanogénica Methanosarcina acetivorans y en un fenómeno que desafía la idea clásica de un código genético rígido. Los autores muestran que en este microorganismo el codón UAG, tradicionalmente considerado una señal de parada, puede tener un doble significado funcional: detener la síntesis de una proteína o permitir la incorporación del aminoácido pirrolisina. Lo más llamativo es que esta ambigüedad no está controlada por un mecanismo especializado y estricto, como ocurre en otros casos conocidos, sino que es tolerada y regulada de manera indirecta por la propia fisiología celular. Este hallazgo convierte al estudio en un ejemplo excepcional de cómo la vida puede operar en los márgenes de sus propias reglas, mostrando que la ambigüedad genética no siempre es un error, sino que puede ser una estrategia estable y funcional. En ese sentido, el trabajo de Shalvarjian et al. no solo amplía nuestro conocimiento sobre un organismo particular, sino que invita a repensar la naturaleza misma del código genético. Música Epic Music World - Ruben K & Lara Ausensi‬ - Sands Of Valhalla ‪ Cale Alit - Persian Santoor - Healing Music For Inspiration & Meditation 8 Bit Universe - Pour Some Sugar On Me [8 Bit Tribute to Def Leppard] Soft Cell – Tainted Love Enlaces K.E. Shalvarjian,G.L. Chadwick,P.I. Pérez,P.H. Woods,V.J. Orphan, & D.D. Nayak. (2025). Methanogenic archaea encoding Pyrrolysine maintain ambiguous amber codon usage, Proc. Natl. Acad. Sci. U.S.A. 122 (45) e2517473122. Disponible en: https://doi.org/10.1073/pnas.251747312 Para leer más Gong, X., Zhang, H., Shen, Y., & Fu, X. (2023). Update of the Pyrrolysyl-tRNA Synthetase/tRNAPyl Pair and Derivatives for Genetic Code Expansion. Journal of bacteriology, 205(2), e0038522. Disponible en: https://doi.org/10.1128/jb.00385-22 Li, J., Kang, P.T., Jiang, R. et al. (2023). Insights into pyrrolysine function from structures of a trimethylamine methyltransferase and its corrinoid protein complex. Commun Biol 6, 54 Disponible en: https://doi.org/10.1038/s42003-022-04397-3 D.G. Longstaff, R.C. Larue, J.E. Faust, A. Mahapatra, L. Zhang, K.B. Green-Church, & J.A. Krzycki. (2007). A natural genetic code expansion cassette enables transmissible biosynthesis and genetic encoding of pyrrolysine, Proc. Natl. Acad. Sci. U.S.A. 104 (3) 1021-1026. Disponible en: https://doi.org/10.1073/pnas.0610294104 Lukeš, J., Eliáš, M., Kachale, A., van der Gulik, P. T. S., & Speijer, D. (2025). Natural and artificial variations of the standard genetic code. Current biology : CB, 35(22), R1104–R1126. Disponible en: https://doi.org/10.1016/j.cub.2025.09.071 Pánek, T., Žihala, D., Sokol, M., Derelle, R., Klimeš, V., Hradilová, M., Zadrobílková, E., Susko, E., Roger, A. J., Čepička, I., & Eliáš, M. (2017). Nuclear genetic codes with a different meaning of the UAG and the UAA codon. BMC biology, 15(1), 8. Disponible en: https://doi.org/10.1186/s12915-017-0353-y Peiter N., Rother M. (2022). SECIS-dependent selenocysteine translation in Archaea. Life Science Alliance, 6 (1) e202201676. Disponible en: https://www.life-science-alliance.org/content/lsa/6/1/e202201676.full.pdf Xian Fu, Dieter Söll & Anastasia Sevostyanova (2018) Challenges of site-specific selenocysteine incorporation into proteins by Escherichia coli , RNA Biology, 15:4-5, 461-470. Disponible en: https://www.tandfonline.com/doi/...
Ancora nessuna recensione